Nonparametric estimation of the cumulative incidence function under outcome misclassification using external validation data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smooth semi‐nonparametric (SNP) estimation of the cumulative incidence function

This paper presents a novel approach to estimation of the cumulative incidence function in the presence of competing risks. The underlying statistical model is specified via a mixture factorization of the joint distribution of the event type and the time to the event. The time to event distributions conditional on the event type are modeled using smooth semi-nonparametric densities. One strengt...

متن کامل

Impact of and Correction for Outcome Misclassification in Cumulative Incidence Estimation

Cohort studies and clinical trials may involve multiple events. When occurrence of one of these events prevents the observance of another, the situation is called "competing risks". A useful measure in such studies is the cumulative incidence of an event, which is useful in evaluating interventions or assessing disease prognosis. When outcomes in such studies are subject to misclassification, t...

متن کامل

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

Nonparametric function estimation under Fourier-oscillating noise

In the popular deconvolution problem, the goal is to estimate a curve f from data that only allow direct estimation of another curve g, the convolution of f and a so-called error density. Unlike the standard assumption in deconvolution, we consider a more general setting where the characteristic function of the error density can have zeros. This problem is important as the characteristic functi...

متن کامل

Partially identified prevalence estimation under misclassification using the kappa coefficient

Many empirical studies are confronted with severe misclassification error. While interest is in the realizations of a variable Y (e.g. disease yes/no), only a related variable Y ∗ (e.g. the outcome of a diagnostic test) can be observed. Even in the case of simple prevalence estimation, naive estimation, neglecting the fundamental difference between Y and Y ∗, may be considerably biased ([1], [2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics in Medicine

سال: 2019

ISSN: 0277-6715,1097-0258

DOI: 10.1002/sim.8380